telefon Телефон +7(8352) 709558),
+7 (927)846-36-11
  viber Viber WhatsApp WhatsApp
  email  E-mail:transformator21@yandex.ru 
  vremya  Время работы: пон-пят. 8:00-17:00 
  local  Производственная база:
Чувашская Республика, г.Чебоксары,
проезд Лапсарский д.15А.
3-min.jpg

Трёхфазный трансформатор что представляет из себя

→ Производство трёхфазных трансформаторов

трёхфазный трансформаторТрёхфазный трансформатор используется для преобразования напряжения. Применяется устройство в сфере электрификации промышленного хозяйства и бытовых нужд. Кроме того, такие устройства незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала. Расчёт трёхфазного трансформатора производится в соответствии со специальной документацией. На основе полученных данных выбирается нужная комплектация. Используется устройство не только для промышленных нужд, но и в бытовых приборах при производстве электронных схем управления.

Трёхфазный трансформатор может быть понижающим или повышающим, коэффициент преобразуемых величин зависит от числа витков обеих обмоток. Устройство может быть собрано из трёх однофазных аналогов или выполняется на общем сердечнике, сумма магнитных потоков каждой фазы в таком приборе будет равна нулю.

Для промышленных трансформаторов проводится ряд испытаний на соответствие заданным параметрам.

Комплекс мероприятий по проверке характеристик устройства включает замеры сопротивления каждой обмотки, проверку изоляции относительно земли и между фазами. Специальным прибором подаётся напряжение на обмотки и проверяется пробивная способность изоляции. Далее на первичную обмотку подаётся напряжение и замеряется величина на выходе. С помощью этого опыта высчитывается коэффициент трансформации. Результаты замеров должны соответствовать величинам, отражённым в сопутствующей документации, в противном случае трёхфазный трансформатор бракуется. Очень важно понимать, что обвязка и монтаж оборудования для распределительных устройств 110 кВ и выше не допускаются без надзора специалиста с завода, где производилось изготовление. При этом испытания должны проводиться согласно принятым правилам в присутствии компетентного лица.

Соединение звездой и треугольникомТрансформатор трёхфазный соединяется по схеме «Звезда» или по схеме «Треугольник». Соединение звездой реализуется общим узлом начал всех фаз. Схема в виде треугольника осуществляется последовательным соединением фаз в кольцо: конец первой фазы соединяется с началом второй, конец второй с началом третьей и конец третьей с началом первой. Если трехфазный трансформатор соединён по схеме «Звезда», то элементы могут выполняться с глухозаземлённой или изолированной нейтралью (так называется узел, соединяющий концы фаз). Для высоковольтных РУ используется специальный зонт, который позволяет заземлять и разземлять нейтраль. Однако в распределительных устройствах для безопасности по 0,4 кВ используется заземлённый ноль. Для защиты линий электропередач используются трансформаторы напряжения, с помощью которых контролируется питание. Они помогают сориентировать защиту по углам и величинам при наладке дифференциала срабатывания устройств. Чаще всего используются три трансформатора на каждую фазу.

У каждого из них есть не менее двух кернов: один соединяется в разомкнутый треугольник, другой - в звезду. Звезда служит для замера напряжения на линиях, а разомкнутый треугольник необходим как защита от замыкания. Сегодня выпускаются трансформаторы напряжения с третьим керном под учёт. С его помощью осуществляется подключение счётчиков. Как правило, третий керн тоже соединяется по схеме звезды. Такое отделение цепей контроля от цепей учёта помогает получить более точные показания, так как класс точности керна для счётчика выше.

Трансформатор напряжения

Трансформаторы напряжения→ Производство трансформатров напряжения

В первую очередь необходимо разобраться: трансформатор напряжения - что это такое.
Это особое устройство, которое необходимо для образования гальванической развязки.
Иными словами, без прямого контакта с помощью данного устройства соединяются цепи высокого и низкого напряжения. С помощью него можно удешевить эксплуатацию оборудования, а также сделать его надежнее и проще в работе одновременно. Также необходим трансформатор для того, чтобы обеспечить безопасность.

Чаще всего подобный агрегат работает на холостом ходу. Он не предназначен для огромных потоков мощности и их преобразования, а всего лишь правильно соединяет вторичные обмотки в любых электрических системах. Это простое действие дает серьезный результат. Оно достаточно сильно может понизить или повысить напряжение в зависимости от того, что необходимо в данный момент.

Принцип действия

В основе лежит тот же принцип, что и в обычном понижающем трансформаторе. В центре располагается листовой сердечник с обмоткой. Сделан он по максимально точным, выверенным расчетам, с многослойными металлами и слюдой, а также с учетом того, что в результате получается правильная амплитуда и угол. Тщательно продуманная конструкция необходима для того, чтобы без лишних проблем подключить к сети абсолютно любой прибор. Трансформатор обязан нормализовать напряжение: он «играет» с этой величиной так, как это необходимо в данный момент, выставляя свой личный коэффициент, независимо от начальных данных.

Наиболее популярным сегодня становится трехфазный трансформатор, например ТСКС. Основной принцип его действия заключается в том, что чем ближе действие к холостому ходу, на котором чаще всего и работает подобное устройство, тем коэффициент трансформации все ближе к номинальному значению. Таким образом, получается, что наиболее эффективен подобный трансформатор именно на холостом ходу, как бы странно это не звучало. Это помогает прибору работать максимально безопасно и стабильно, практически полностью исключая любые непредвиденные поломки.

Необходимо правильно настроить это устройство, потому что трансформатор может работать одновременно в нескольких классах точности. А именно в половину, единицу, а также в три единицы измерения.

Следует подумать и о мерах безопасности. Это означает  - прежде всего - высокое качество самого прибора. Трансформатор «из Китая» или же самодельный совершенно необязательно будет четко выполнять свои функции, более того - иногда может произойти самовозгорание.

Назначение

Чтобы четко понять, что же представляет из себя трансформатор напряжения, необходимо рассмотреть его назначение.

Основная особенность данной техники в том, что она легко преобразует низкое напряжение в высокое или наоборот - в зависимости от вида и настройки конкретного аппарата. В повседневной жизни это отличные предохранители.

Именно с помощью трансформаторов каждое устройство получает необходимое напряжение, будь то болгарка или же простой кипятильник. Аналогично работает техника и в промышленных масштабах, когда разница становится еще более значительной.

Виды трансформатров напряжения

На самом деле трансформаторов напряжения достаточно много. Каждый из них может пригодиться в определенной ситуации. Потому необходимо тщательно рассмотреть все характеристики, положительные и отрицательные стороны, чтобы понять, для чего нужен трансформатор напряжения конкретного типа. Они отличаются, прежде всего, конструкцией: именно она накладывает определенные особенности на эксплуатацию.

Заземляемый

Этот трансформатор напряжения представляет собой однофазное или трехфазное устройство. Обязательно один его конец должен быть заземлен, именно поэтому он и получил подобное название. В землю уходит нейтраль первичной обмотки.

Наземляемый

Этот вариант трансформатора не нуждается в заземлении. Вся его конструкция находится на поверхности. Обязательно должны быть изолированы все уровни, особенно это касается зажимов. В зависимости от уровня напряжения необходимо поднимать некоторые части на определенную высоту.

Каскадный

Трансформатор здесь состоит из первичной обмотки, которая строго разделена на несколько секций. Они располагаются на разном уровне от земли и имеют вид каскада. Соединены между собой все эти части с помощью дополнительных связующих обмоток.

Емкостный

Подобный трансформатор имеет дополнительную деталь - емкостный делитель, из-за него и появилось название.

Двухобмоточный

Помимо первичной обмотки, здесь имеется и вторичная.

Трехобмоточный

Подобная модель трансформатора мало отличается от предыдущей, но вторичных обмоток две.

Каждый тип создан специально для определенной ситуации. В случае необходимости можно любой трансформатор приспособить под определенную электрическую систему, но лучше всего следовать рекомендациям, которые гарантируют полноценную и стабильную работу с минимальными затратами ресурсов.

Трансформатор однофазный - общая информация

Для получения мощности высокого напряжения и малой силы тока служит статическая электрическая машина-трансформатор.

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования посредством магнитного поля электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения при условии сохранения частоты тока.

Трансформаторы применяются в электрических сетях при передаче и распределении электрической энергии; в нагревательных, сварочных, выпрямительных электроустановках; в радиоаппаратура, устройствах автоматики, связи; в электроизмерительной технике и т. д.

В большинстве типов трансформаторов обмотки размещены на ферромагнитном сердечнике, который служит для концентрации магнитного поля и усиления магнитной связи между обмотками. Трансформаторы различают также по числу фаз (однофазные, трехфазные), числу обмоток (двухобмоточные, многообмоточные), способу охлаждения (масляные, сухие). Основную, наиболее многочисленную, группу составляют силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических сетях и в электрических устройствах различного назначения.

Трансформаторы, увеличивающие напряжения переменного тока, называются повышающими, а уменьшающие напряжение - понижающими.

Силовые трансформаторы в зависимости от конструкции и назначения бывают различных типов.

Тип трансформатора обозначается буквами и цифрами. Первая буква обозначает фазность:

О - однофазный,
Т - трехфазный.

Вторая буква или вторая и третья - вид охлаждения:

М - естественное масляное;
Д - дутьевое, обдувание масляных радиаторов;
Ц - циркуляции масла принудительное, с помощью масляных насосов;
ДЦ - принудительная циркуляция масла через охлади-тели, обдуваемые воздухом;
С - сухой, с воздушным охлаждением.


Дальше буквы указывают:

А - алюминиевые обмотки;
Н - с регулятором напряжения под нагрузкой;
АН - со стабилизирующим устройством для регулиро-вания напряжения под нагрузкой;
Р - для ртутного выпрямителя.

Цифра в числителе указывает полную мощность трансформатора в киловольт-амперах, а в знаменателе -- высшее напряжение в киловольтах.

Например, ТСЗ-40,0- трехфазный трансформатор с сухим охлаждением , закрытый, под нагрузкой мощностью 40 кВ?А.

На каждом трансформаторе имеется щиток, на котором указывается ток трансформатора, линейные токи при номинальной мощности, частота, число фаз, схема и группа соединения обмоток.

Кроме силовых трансформаторов, изготовляется ряд трансформаторов специального назначения (автотрансформаторы, сварочные, измерительные и т.д.).

Что такое сухой трансформатор

Сухой трансформатор состоит из обмоток ВН и НН, заключенных в защитный кожух.

Сухие ьрансформаторыОсновной изолирующей и охлаждающей средой является атмосферный воздух.

Воздушная среда по сравнению с маслом обладает меньшими изолирующими свойствами, поэтому к изоляции обмоток сухих трансформаторов предъявляют повышенные требования.

Так как обмотки сухих трансформаторов непосредственно соприкасаются с воздухом и увлажняются, эти трансформаторы устанавливают только в сухих закрытых помещениях. Для уменьшения гигроскопичности обмотки пропитывают специальными лаками.

Различают следующие конструкции сухих трансформаторов: сухие трансформаторы по технологии «монолит», сухие трансформаторы с литой обмоткой, сухие трансформаторы с открытой обмоткой.

При технологии «монолит» процесс заливки осуществляется в глубоком вакууме. Во время работы и при перегрузках литая эпоксидная изоляция не выделяет продукты. Особые свойства сухого трансформатора позволяют использовать его в помещениях с повышенными требованиями к пожарной и экологической безопасности, во встроенных подстанциях с опасными (тяжелыми и агрессивными) условиями эксплуатации электрооборудования. Электропрочность обмоток сухих трансформаторов обеспечивается применением соответствующей изоляции проводов. Механическая прочность конструкции достигается благодаря использованию бандажных лент, гарантирующих монолитность после пропитки лаками и последующем запеканием . Правда после пропитки несколько снижается электропрочность изоляции, но из-за разнесения функций обеспечения изоляции и механической жесткости на разные материалы, такая технология дает возможность длительной эксплуатации оборудования при циклических тепловых нагрузках без снижения электрических характеристик изоляции.

→ Производство сухих трансформаторов

В сухих трансформаторах с открытой обмоткой катушки пропитываются по технологии вакуум-давление пропиточной смолой, что дает прочное изоляционное покрытие толщиной до 0,2 мм, которое гарантирует надежный уровень изоляции и защиты от воздействия окружающей среды, в то же время не препятствует эффективному охлаждению катушки. При использовании изоляционных профилей и высокопрочных изоляторов из фарфора, в конструкции сухого трансформатора формируются вертикальные и горизонтальные каналы для охлаждения, что эффективно охлаждает обмотки. Благодаря конвекционным потокам воздуха при охлаждении сухой трансформатор устойчив к загрязнениям.

В сухих трансформаторах с литой обмоткой механическая жесткость конструкции обмотки обеспечивается технологией ее изготовления. Применяются специальные наполнители, благодаря которым удалось существенно улучшить механические, теплопроводящие и противопожарные свойства.

Есть и минусы в использовании литых обмоток в сухих трансформаторах:

  1. Поскольку масса изоляционного материала в конструкции сухого трансформатора с литой обмоткой существенно больше, а также из-за имеющихся неоднородностей материала при вакуумной пропитке, увеличивается вероятность частичных разрядов.
  2. Большая толщина создает определенные проблемы и с охлаждением обмотки высокого напряжения. Кроме того, чаще возникают механические напряжения в изоляции при перепаде температур обмотки и воздуха.

Применение литой обмотки в сухих трансформаторах дает возможность в тех же габаритах получить трансформаторы для использования в сетях с более высоким уровнем напряжения.

Назначение сухих трансформаторов.

В первую очередь сухие трансформаторы применяются в местах, где особое значение имеет высокий уровень безопасности людей, оборудования и окружающей среды. Сухие трансформаторы больших мощностей необходимы в электроустановках промышленных предприятий, в частности нефтехимической, металлургической, машиностроительной, целлюлозно-бумажной отраслей, а также для электроснабжения общественных зданий, сооружений, транспорта.

Сухие трансформаторы с естественным воздушным охлаждением в основном предназначены для установки в сухих закрытых помещениях(с относительной влажностью воздуха не выше 80% и отсутствии в атмосфере агрессивных веществ и пыли).

Преимущества сухих трансформаторов.

Сухие трансформаторы пожаробезопасны

Сухие трансформаторы имеют защитные кожухи с отверстиями, закрытым и сетками. Применение в качестве изоляции обмоток стекловолокна или асбеста позволяет значительно повысить рабочую температуру обмоток и получить практически пожаробезопасную установку. Это свойство сухих трансформаторов дает возможность применять их для установки внутри сухих помещений в тех случаях, когда обеспечение пожарной безопасности установки является решающим фактором.

Отсутствие затрат на обслуживание сухих трансформаторов

Так как в сухих трансформаторах охлаждающей средой является воздух, который возобновляется непрерывно, то исключается старение масла и необходимость чистки и замены его.

Капиталовложения в сухие трансформаторы окупаются

Электромагнитные нагрузки активных материалов в сухих трансформаторах приходится уменьшать по сравнению с электромагнитными нагрузками масляных трансформаторов, что приводит к увеличению сечения проводов обмоток и магнитопровода. Увеличение стоимости активных материалов по сравнению с масляными сказывается особенно сильно с ростом мощности сухого трансформатора и увеличением напряжений его обмоток.

В то же время применение новых нагревостойких, и негорючих изоляционных материалов, обладающих высокой теплопроводностью, позволяет увеличить электромагнитные нагрузки и уменьшить стоимость активных материалов.

 

Принцип действия и устройство трансформатора

завод трансформаторовзавод трансформаторовпроизводство трансформатора

Действие трансформатора основано на явлении взаимной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней электродвижущую силу ( ЭДС ). Если вторичную обмотку замкнуть на какой-либо приемник энергии, то под действием индуктируемой ЭДС по этой обмотке и через приемник энергии начнет протекать ток.

Одновременно в первичной обмотке также появится нагрузочный ток. Таким образом, электрическая энергия, трансформируясь, передается из первичной сети во вторичную при напряжении, на которое рассчитан приемник энергии, включенный во вторичную сеть.

В целях улучшения магнитной связи между первичной и вторичной обмотками их помещают на стальной магнитопровод. Обмотки изолируют как друг от друга, так и от магнитопровода. Обмотка более высокого напряжения называется обмоткой высшего напряжения ( ВН ), а обмотка более низкого напряжения - обмоткой низшего напряжения ( НН ). Обмотка, включенная в сеть источника электрической энергии, называется первичной; обмотка, от которой энергия подается к приемнику, - вторичной.

Обычно напряжения первичной и вторичной обмоток неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного - понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие - для ее распределения между потребителями.

В трехобмоточных трансформаторах на магнитопровод помещают три изолированные друг от друга обмотки. Такой трансформатор, питаемый со стороны одной из обмоток, дает возможность получать два различных напряжения и снабжать электрической энергией две различные группы приемников. Кроме обмоток высшего и низшего напряжения трехобмоточный трансформатор имеет обмотку среднего напряжения ( СН ).

Обмоткам трансформатора придают преимущественно цилиндрическую форму, выполняя их при малых токах из круглого медного изолированного провода, а при больших токах - из медных шин прямоугольного сечения

Ближе к магнитопроводу располагают обмотку низшего напряжения, так как ее легче изо­лировать от него, чем обмотку высшего напряжения.

Обмотку низшего напряжения изолируют от стержня прослойкой из какого-либо изолировочного материала. Такую же изолирующую прокладку помещают между обмотками высшего и низшего напряжения.

При цилиндрических обмотках поперечному сечению стержня магнитопровода желательно придать круглую форму, чтобы в площади, охватываемой обмотками, не оставалось немагнитных промежутков. Чем меньше немагнитные промежутки, тем меньше длина витков обмоток, а следовательно, и масса меди при заданной площади сечения стального стержня.

Однако стержни круглого сечения изготовлять сложно. Магнитопровод набирают из тонких стальных листов, и для получения стержня круглого сечения понадобилось бы большое число стальных листов различной ширины, а это потребовало бы изготовления множества штампов. Поэтому в трансформаторах большой мощности стержень имеет ступенчатое поперечное сечение с числом ступеней не более 15-17. Количество ступеней сечения стержня определяется числом углов в одной четверти круга. Ярмо магнитопровода, т. е. та его часть, которая соединяет стержни, имеет также ступенчатое сечение.

Для лучшего охлаждения в магнитопроводах, а также в обмотках мощных трансформаторов устраивают вентиляционные каналы в плоскостях, параллельных и перпендикулярных плоскости стальных листов.

В трансформаторах малой мощности площадь сечения провода мала и выполнение обмоток упрощается. Магнитопроводы таких трансформаторов имеют прямоугольное сечение.

Номинальные данные трансформатора

Полезная мощность, на которую рассчитан трансформатор по условиям нагревания, т. е. мощность его вторичной обмотки при полной ( номинальной ) нагрузке называется номинальной мощностью трансформатора. Эта мощность выражается в единицах полной мощности — в вольтамперах ( ВА ) или киловольт-амперах (кВА). В ваттах или киловаттах выражается активная мощность трансформатора, т. е. та мощность, которая может быть преобразована из электрической в механическую, тепловую, химическую, световую и т. д.

Сечения проводов обмоток и всех частей трансформатора, так же как и любого электротехнического аппарата или электрической машины, определяются не активной составляющей тока или активной мощностью, а полным током, протекающим по проводнику и, следовательно, полной мощностью. Все прочие величины, характеризующие работу трансформатора в условиях, на которые он рассчитан, также называются номинальными.

Каждый трансформатор снабжен щитком из материала, не подверженного атмосферным влияниям. Щиток прикреплен к баку трансформатора на видном месте и содержит его номинальные данные, которые нанесены травлением, гравировкой, выбиванием или другим способом, обеспечивающим долговечность знаков. На щитке трансформатора указаны следующие данные:

 

1. Марка завода-изготовителя.

2. Год выпуска.

3. Заводской номер.

4. Обозначение типа.

5. Номер стандарта, которому соответствует изготовленный трансформатор.

6. Номинальная мощность ( кВА ). (Для трехобмоточных трансформаторов указывают мощность каждой обмотки. )

7. Номинальные напряжения и напряжения ответвлений обмоток ( В или кВ ).

8. Номинальные токи каждой обмотки ( А ).

9. Число фаз.

10. Частота тока ( Гц ).

11. Схема и группа соединения обмоток трансформатора.

12. Напряжение короткого замыкания ( % ).

13. Род установки ( внутренняя или наружная ).

14. Способ охлаждения.

15. Полная масса трансформатора ( кг или т ).

16. Масса масла ( кг или т ).

17. Масса активной части ( кг или т ).

18. Положения переключателя, обозначенные на его приводе.

Для трансформатора с искусственным воздушным охлаждением дополнительно указана мощность его при отключенном охлаждении. Заводской номер трансформатора выбит также на баке под щитком, на крышке около ввода ВН фазы А и на левом конце верхней полки ярмовой балки магнитопровода.

Условное обозначение трансформатора состоит из буквенной и цифровой частей. Буквы означают следующее: Т - трехфазный трансформатор, О - однофазный, М - естественное масляное охлаждение, Д - масляное охлаждение с дутьем ( искусственное воздушное и с естественной циркуляцией масла ), Ц - масляное охлаждение с принудительной циркуляцией масла через водяной охладитель, ДЦ - масляное с дутьем и принудительной циркуляцией масла, Г - грозоупорный трансформатор, Н в конце обозначения - трансформатор с регулированием напряжения под нагрузкой, Н на втором месте - заполненный негорючим жидким диэлектриком, Т на третьем месте - трехобмоточный трансформатор.

Буква А в обозначении типа трансформатора означает автотрансформатор. В обозначении трехобмоточных автотрансформаторов букву А ставят либо первой, либо последней. Если автотрансформаторная схема является основной ( обмотки ВН и СН образуют автотрансформатор, а обмотка НН дополнительная ), букву А ставят первой, если автотрансформаторная схема является дополнительной, букву А ставят последней.

 

Завод трансформаторов "Эльма"

Publish modules to the "offcanvas" position.